首页> 外文OA文献 >Dictionary Learning Based Image Descriptor for Myocardial Registration of CP-BOLD MR
【2h】

Dictionary Learning Based Image Descriptor for Myocardial Registration of CP-BOLD MR

机译:基于字典学习的Cp-BOLD mR心肌注册图像描述子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cardiac Phase-resolved Blood Oxygen-Level-Dependent (CP-BOLD) MRI is a new contrast agent- and stress-free imaging technique for the assessment of myocardial ischemia at rest. The precise registration among the cardiac phases in this cine type acquisition is essential for automating the analysis of images of this technique, since it can potentially lead to better specificity of ischemia detection. However, inconsistency in myocardial intensity patterns and the changes in myocardial shape due to the heart’s motion lead to low registration performance for state-of-the-art methods. This low accuracy can be explained by the lack of distinguishable features in CP-BOLD and inappropriate metric definitions in current intensity-based registration frameworks. In this paper, the sparse representations, which are defined by a discriminative dictionary learning approach for source and target images, are used to improve myocardial registration. This method combines appearance with Gabor and HOG features in a dictionary learning framework to sparsely represent features in a low dimensional space. The sum of absolute differences of these distinctive sparse representations are used to define a similarity term in the registration framework. The proposed approach is validated on a dataset of CP-BOLD MR and standard CINE MR acquired in baseline and ischemic condition across 10 canines.
机译:心脏相分辨血氧水平依赖性(CP-BOLD)MRI是一种用于评估静止心肌缺血的新型造影剂和无压力成像技术。在这种电影类型采集中,各心脏阶段之间的精确配准对于自动分析该技术的图像至关重要,因为它有可能导致缺血检测的更好特异性。但是,由于心脏运动而导致的心肌强度模式的不一致以及心肌形状的变化会导致现有技术方法的配准性能降低。如此低的准确性可以通过CP-BOLD中缺乏可区分的功能以及当前基于强度的注册框架中不适当的度量定义来解释。在本文中,稀疏表示由具有区别性的字典学习方法针对源图像和目标图像定义,用于改善心肌的定位。该方法在字典学习框架中将外观与Gabor和HOG特征相结合,以稀疏地表示低维空间中的特征。这些独特的稀疏表示形式的绝对差之和用于定义注册框架中的相似性术语。在基线和缺血情况下跨10个犬获得的CP-BOLD MR和标准CINE MR数据集上验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号